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ABSTRACT 31 

Many marine species are shifting their distributions in response to changing ocean 32 

conditions, posing significant challenges and risks for fisheries management. Species distribution 33 

models (SDMs) are used to project future species distributions in the face of a changing climate. 34 

Information to fit SDMs generally comes from two main sources: fishery-independent (scientific 35 

surveys) and fishery-dependent (commercial catch) data. A concern with fishery-dependent data 36 

is that fishing locations are not independent of the underlying species abundance, potentially 37 

biasing predictions of species distributions. However, resources for fishery-independent surveys 38 

are increasingly limited, therefore, it is critical we understand the strengths and limitations of 39 

SDMs developed from fishery-dependent data. We used a simulation approach to evaluate the 40 

potential for fishery-dependent data to inform SDMs and abundance estimates, and quantify the 41 

bias resulting from different fishery-dependent sampling scenarios in the California Current 42 

System (CCS). We then evaluated the ability of the SDMs to project changes in the spatial 43 

distribution of species over time, and compare the time-scale over which model performance 44 

degrades between the different sampling scenarios and as a function of climate bias and novelty. 45 

Our results show that data generated from fishery-dependent sampling can still result in SDMs 46 

with high predictive skill several decades into the future, given specific forms of preferential 47 

sampling which result in low climate bias and novelty. Therefore, fishery-dependent data may be 48 

able to supplement information from surveys that are reduced or eliminated for budgetary 49 

reasons to project species distributions into the future. 50 
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models, virtual species 52 
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 73 

INTRODUCTION 74 

The world’s climate is changing at an unprecedented rate. Over the last century global 75 

average temperature has increased by 0.85°C, resulting in biological responses across terrestrial, 76 

freshwater, and marine environments (Nye et al. 2009, Cheung et al. 2015, Morley et al. 2018, 77 

Pecl et al. 2017). Species may respond to a changing climate in a variety of ways, including 78 

acclimatizing, adapting, moving to an area with a more suitable environment, or even dying. The 79 

responses of species to climate change, such as the rate of change in distributions, are more 80 

pronounced in the ocean, which absorbs the majority of the excess atmospheric heat from 81 

greenhouse gas emissions (Sorte et al. 2010; Poloczanska et al. 2013, 2016; Pinsky et al 2019). 82 

Changes in species distributions pose significant challenges and risks to resource management 83 

and the communities and economies that depend on marine resources (Pinsky et al. 2019). This 84 

is particularly so for fisheries that are faced with species shifting outside of historical fishing 85 

areas or across management boundaries (Ishimura et al. 2013, Sumaila et al. 2020). In light of 86 

this, there is an increasing need to predict how marine species distributions will respond to 87 

changing conditions. Accurate projections of future species distributions can inform our 88 

understanding of potential impacts on fisheries and fishing communities, climate change risk 89 

assessments, and sustainable fisheries management that can anticipate, prepare and account for 90 

these changes (Rogers et al 2019, Selden et al 2019, Smith et al. 2021a).  91 

Correlative species distribution models (SDMs) are increasingly being used to project 92 

future species distributions to aid management decision making in the face of a changing climate 93 

(Cheung et al. 2009; Hazen et al. 2013). SDMs use statistical methods to relate species 94 
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occurrence or abundance to underlying environmental conditions, and then use those fitted 95 

relationships to predict current and future distribution patterns (Elith et al. 2009; Guisan and 96 

Thuiller 2005). SDMs generally perform better when predicting within the same time and space 97 

as the data used for calibration (e.g. interpolation), but performance can decline when projecting 98 

into novel environmental conditions and locations (i.e. extrapolation) (Muhling et al. 2020; 99 

Meyer and Pebesma 2021). However, in some cases, SDMs can perform well when predicting 100 

abundance and distribution under novel conditions (Becker et al. 2019). As climate change 101 

continues to cause novel conditions to emerge (Smith et al. 2022), understanding when models 102 

can perform well and what factors impact SDM performance under novel conditions is 103 

increasingly important.  104 

An important factor that can effect SDM performance, particularly with regard to their 105 

ability to accurately project species distributions far into the future, is quality of the training data 106 

used to fit the models. In the case of marine fisheries, occurrence and abundance data mainly 107 

come from two sources, fishery-independent and/or fishery-dependent data. Fishery-independent 108 

data are often collected through expensive research programs which conduct standardized 109 

scientific surveys over large areas. Fishery-independent data collected via scientifically designed 110 

and standardized sampling gear and designs are particularly valuable as these sampling 111 

properties facilitate straightforward empirical estimation of population density and abundance. 112 

However, due to high cost and logistical challenges, fishery-independent data may not be 113 

available for all species, seasons, and regions (Dennis et al. 2015). This is particularly the case 114 

for many highly migratory species, which tend to have large and dynamic ranges (Lynch et al. 115 

2018). 116 

Fishery-dependent data often come from scientific observers on commercial fishing 117 

vessels, fish tickets (i.e. landing receipts), and/or industry-reported logbooks, and are frequently 118 

the only distribution data available for many species. They may provide some advantages over 119 

fishery-independent data, particularly with respect to the number of observations available. 120 

Additionally, fishery dependent data may actually be preferred in certain circumstances. For 121 

example, when the goal is to understand how a species may interact with the fishery (Crear et al. 122 

2021). However, a potential concern with fishery-dependent data is their non-probabilistic, 123 

preferential sampling scheme. Economic, social, and management factors drive the distribution 124 
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of fishing locations; for example, fishers actively seek out areas with expected high 125 

concentrations of their target species (Pennino et al. 2019), but also may make decisions on 126 

where to fish based on local knowledge and experience (St. Martin and Hall-Aber 2008), 127 

management restrictions such as bycatch avoidance, closed areas, and landings requirements, as 128 

well as economic considerations such as fuel costs influencing the distance they are able or 129 

willing to travel from ports (Wilen 2004; Smith and Wilen 2003; Daw 2008; Bucaram et al. 130 

2013).  131 

The locations of fishing activity are therefore not random, and not independent of the 132 

response variable (e.g. species abundance) (Diggle et al. 2010; Conn et al. 2017; Pennino et al. 133 

2019). Such preferential sampling violates a statistical assumption that sampling locations have 134 

been chosen independently of the value expected at a given location, and can result in biased 135 

predictions of abundance and distribution (Diggle et al. 2010; Conn et al. 2017; Pennino et al. 136 

2019; Rufener et al. 2021, Alglave et al. 2022). Additionally, the non-random nature of fishing 137 

locations often results in the fishery-dependent data being spatially clustered relative to the 138 

underlying spatiotemporal distribution of the target species, which can result in poor 139 

representation within the data of the complete range of environmental conditions present in an 140 

area (Kadmon et al. 2004). The quality of an SDM and its ability to provide accurate predictions, 141 

particularly under novel conditions, can be strongly affected by such spatially and 142 

environmentally biased sampling schemes (Kadmon et al. 2004; Stoa et al. 2018; Yates et al. 143 

2018; Baker et al. 2022).  144 

Despite a general understanding of these potential biases and impacts on SDM 145 

performance, more work is needed in assessing the relative magnitude of such biases coming 146 

from different types of fishery-dependent sampling and understanding the factors that impact the 147 

relative magnitude. Several recent studies show that fishery-dependent data does not always 148 

result in biased predictions and may still be appropriate to analyze with standard statistical 149 

approaches (Pennino et al. 2016; Ducharme-Barth et al. 2022), or can be complementary to 150 

fishery-independent data using integrated methods (Rufener et al. 2021, Alglave et al. 2022). 151 

Therefore, considering that resources are increasingly limited at agencies for fishery-independent 152 

surveys, it is critical we understand the strengths and limitations of SDMs developed for 153 

evaluating future fish distributions from fishery-dependent data.   154 
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In this study, we explore the potential for fishery-dependent data to inform SDMs and 155 

abundance estimates, and quantify the bias resulting from different fishery-dependent sampling 156 

scenarios in the California Current System (CCS; Fig. 1). Specifically, we ask:  157 

1. How do various types of fishery-dependent sampling affect SDM performance, relative to 158 

a randomized sampling process?  159 

2. What is the timescale over which future SDM performance degrades, and is it affected by 160 

the type of fishery-dependent sampling?     161 

 162 

We use a simulation approach to generate the ‘true’ distribution of a species based on 163 

static relationships between abundance and environmental variables. We then simulate a random 164 

sampling and several different fishery-dependent sampling processes to collect species 165 

observations and fit two types of SDMs (generalized additive models (GAMs) and Boosted 166 

Regression Trees (BRTs)) to those data. We then evaluate the ability of the SDMs to project 167 

changes in abundance, center of gravity, and spatial patterns of distribution into the future, and 168 

compare the time-scale over which model performance degrades between the different sampling 169 

scenarios and as a function of climate bias and novelty. This simulation approach is 170 

advantageous because it allows us to test the impacts of different sampling scenarios on model 171 

performance against a known ‘truth’, which is not possible with in situ data.  172 

 173 

METHODS 174 

General Framework 175 

To quantify the impact of fishery-dependent sampling bias on the ability of SDMs to 176 

predict current and project future species distributions, we used a simulation-estimation process 177 

consisting of four main steps (Fig. 2): 1) develop an operating model (OM) to simulate a virtual 178 

species distribution, 2) sample the virtual species distribution with simulated random and 179 

fishery-dependent sampling procedures, 3) use the simulated data (training period 1985-2010) to 180 

fit an estimation model (the SDM), and project the SDM from 2011 to 2100 under climate 181 

change, and 4) evaluate performance of fitted models by comparing the output of SDM 182 

predictions against the ‘true’ simulated observations. Here we provide an overview of the key 183 

aspects of the simulation. More details can be found in the Supplemental Methods and in Table 184 
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S1, and the Rcode for this simulation can be found on  github (https://github.com/Melissa-185 

Karp/Fishery-dependent-SDM-projections). 186 

 187 

Operating model 188 

We used the virtualspecies package (Leroy et al. 2016) in R version 3.6.1 (R Core Team 189 

2019) to build our operating model. This enables us to not only simulate species-environment 190 

responses and convert habitat suitability to presence-absences or abundance, but also incorporate 191 

biases into the process of sampling occurrences.  192 

 193 

Environmental variables  194 

Environmental data were obtained from a California Current System (CCS) configuration 195 

of the Regional Ocean Modeling System (ROMS). This configuration covers 30-48˚N and 196 

inshore of 134˚W, with 0.1 degree (7-11 km) horizontal resolution and 42 terrain-following 197 

vertical levels (Veneziani et al. 2009, Pozo Buil et al. 2021). For projections of ocean conditions, 198 

the CCS ROMS model was forced by output for 1980-2100 from a global Earth System Model 199 

(ESM; HadGEM2-ES) under the RCP8.5 emission scenario. For this study, 1985-2010 was 200 

considered the ‘historical’ period, and 2011-2100 the ‘future’ period, but both periods were 201 

sourced from the same ESM-forced projection. To correct for biases in the ESM used to force 202 

ROMS, a “time-varying delta” method was applied before performing the downscaling with 203 

ROMS, in which ESM changes (calculated as departures from the 1980-2010 climatology) were 204 

added to the observed 1980-2010 climatology (Pozo Buil et al. 2021, Smith et al. 2021a). To 205 

project regional biogeochemical change (including phytoplankton biomass), ROMS is coupled to 206 

the biogeochemical model NEMUCSC (Fiechter et al. 2014; Fiechter et al. 2018) – an adapted 207 

version of the North Pacific Ecosystem Model for Understanding Regional Oceanography 208 

(NEMURO; Kishi et al. 2007). NEMUCSC consists of three limiting macronutrients, two 209 

phytoplankton size-classes, three zooplankton size-classes, and three detritus pools. Following 210 

the approach in Fiechter et al. (2018), NEMUCSC was coupled offline to the ROMS downscaled 211 

projection (Pozo Buil et al., 2021). Environmental variables of interest were sea surface 212 

temperature (SST; C), mixed layer depth (MLD; m), surface chlorophyll-a (Chl-a; mg m-3), and 213 

zooplankton integrated over 200 m (zoo_200; mmol N m-2). 214 

 215 
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We used only one ESM to keep the simulation manageable, and selected HadGEM2-ES 216 

because it is at the upper end of projected end-of-century warming for the CMIP5 ensemble 217 

(~4˚C), and thus maximizes the signal to noise ratio. We note that our results may be somewhat 218 

specific to the CCS, and that the magnitude of change (and trends in specific variables) projected 219 

by HadGEM2-ES can differ considerably to that projected by other ESMs and within other 220 

systems (Pozo Buil et al. 2021). However, the directionality of projected change in offshore 221 

waters, which are the focus of this study, are consistent across three ESMs examined in Pozo 222 

Buil et al. (2021).   223 

 224 

Generating the species distribution and abundance 225 

We based the simulated species on a pelagic predator which responds to sea-surface 226 

temperature (SST), prey fields, and mixed layer depth (MLD) in the CCS, and is present during 227 

spring. We chose to model our species to resemble a large pelagic predator (e.g. characteristics 228 

similar to albacore (Thunnus alalunga, Scombridae) or swordfish (Xiphias gladius, Xiphiidae) 229 

because these species have high capacity to follow changing environmental conditions, 230 

potentially leading to greater future issues with cross-boundary management, viability of home-231 

ports, bycatch interactions, and other consequences of climate-induced range shifts (Smith et al. 232 

2021b). In addition, large pelagic predators are commercially-important species for US West 233 

Coast fishermen (Frawley et al. 2021) but are not routinely sampled as part of fisheries-234 

independent surveys. 235 

 236 

Spatial biomass of our virtual pelagic predator was simulated through a two-step process 237 

(Brodie et al., 2020). First, we simulated habitat suitability based on environmental and 238 

biological data and defined species preferences (Fig S7; see supplementary methods and Table 239 

S1 for more detailed information on species preferences). The environmental and biological 240 

variables used to force the species habitat suitability were SST (˚C), MLD (m) and the 241 

distribution of a simulated prey species, which was forced by SST and zooplankton biomass 242 

integrated over the upper 200 m of the water column (mmol N m-2). We chose to focus on the 243 

spring season, when temperatures typically warm rapidly in the northern CCS. Each variable was 244 

therefore averaged over the spring months (March - May) to capture typical spring conditions in 245 

the study system.  246 
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 247 

Second, habitat suitability for the simulated species was converted into presence-absence 248 

using the probability method in virtualspecies. This approach does not use a defined threshold or 249 

cutoff for presence-absence. Instead, it uses a logistic function to convert the environmental 250 

suitability of each cell into a probability of occurrence. The probability of occurrence is then 251 

used to sample presence-absence in each cell using a random draw that is weighted by the 252 

probability of occurrence (Meynard et al. 2013, Leroy et al. 2016). Biomass (kg) was then 253 

calculated as a function of the habitat suitability at locations where it was classified as present, 254 

and determined to be 0 where the species was classified as absent, for each year of the 255 

simulation. Specifically, biomass was estimated from a log-normal distribution estimated from 256 

albacore (the model species for our simulated large pelagic predator) biomass in the CCS, and 257 

when the species was present, biomass at each grid cell was multiplied by habitat suitability of 258 

that same grid cell to provide habitat-informed biomass (see Table S1). Albacore biomass in the 259 

CCS was considered as the average biomass vulnerable to the U.S. surface fleet from 1999-2015 260 

(Tommasi and Teo 2020).  261 

 262 

Sampling Process: simulating fishery-dependent data collection  263 

We sampled the simulated species distribution according to 14 different sampling 264 

scenarios which fall under five general types of sampling types: random sampling (1 scenario), 265 

preferential sampling (1 scenario), constrained by distance to port (8 scenarios), constrained by 266 

bycatch avoidance (1 scenario), and constrained by a closed area (3 scenarios). To determine the 267 

locations of fishing activity for each of the scenarios, except Random, we built a ‘fishing 268 

suitability’ raster using a similar process as was used to build the habitat suitability rasters for 269 

our simulated species as described previously.  The fishing suitability raster was used to 270 

determine the probability of each cell being sampled using the ‘weights’ feature within the 271 

sampleoccurrences function in the virtualspecies package. Below is an overview of the different 272 

sampling scenarios, and the full details of the generation of these fishing suitability rasters are 273 

given in Supplemental materials, Material S1.  274 

1) Random sampling: This represents our control, unbiased scenario, and is closest to 275 

fishery-independent sampling. In this scenario, each cell within our study area (ROMS 276 
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domain) has an equal probability of being sampled regardless of the underlying 277 

abundance of the virtual species.  278 

2) Preferential sampling: The probability of a cell being fished is a function of the habitat 279 

suitability for the target species in the previous year (y-1), where the greater the habitat 280 

suitability the higher the probability of fishing occurring.  281 

3) Constrained by distance to port: Suitable fishing areas are determined by distance to 282 

home ports and habitat suitability for target species. We built fishing suitability rasters for 283 

8 different distance from port scenarios: two where fishing was limited to just around 284 

northern CCS ports (Ports Northern), two limited to around ports in the middle of the 285 

ROMS domain (Ports Middle), two limited to around southern ports (Ports Southern), 286 

and two which were not limited (e.g., fishing enabled around all ports; Ports All). One of 287 

the scenarios for each pair simulated an offshore fishery where fishing suitability was 288 

high up until about 300 miles from a port (Offshore), and one scenario simulated a 289 

nearshore fishery where fishing suitability declines after about 50 miles from a port 290 

(Nearshore). 291 

4) Constrained by bycatch avoidance: Suitable fishing areas are determined by habitat 292 

suitability of the target species, while avoiding areas of high bycatch risk (e.g. high 293 

habitat suitability for simulated bycatch species).  294 

5) Constrained by closed area: Suitable fishing areas are determined by habitat suitability of 295 

the target species, while taking into account that no fishing activity can occur within a 296 

static closed area. We built fishing suitability rasters for three closed area scenarios in 297 

which the size of the closed area varied (referred to as Closed Area Small, Closed Area 298 

Medium, and Closed Area Large).  299 

 300 

These five general types represent simplified behavior observed in actual fisheries, 301 

including some on the U.S. West Coast. Preferential sampling represents the most ubiquitous 302 

fisher behavior, whereby fishers follow their target species to maximize profitability (van Putten 303 

et al 2012). Distance to port sampling is observed in the Pacific sardine fishery (Rose et al 2015, 304 

Smith et al 2021a), and closed area and bycatch avoidance sampling is observed and expected in 305 

the drift gillnet swordfish fishery (Urbisci et al 2016, Hazen et al 2018). We note that fishery-306 

dependent data arises from additional processes beyond those included in the simulation model 307 
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here (e.g., vertical distribution, vessel attributes, targeting and reporting rates in multispecies 308 

logbooks, area vs. effort expansion, etc.), and that there is a large literature on dealing with those 309 

additional complexities that we do not address in the SDMs fit in this study (Stephens and 310 

MacCall 2004, Maunder and Punt 2004, Maunder et al. 2021). 311 

 312 

Estimation models: fitting species distribution models 313 

We fit the simulated data using two types of SDMs commonly used in ecological 314 

modeling: a correlative statistical model (generalized additive model, GAM; mgcv R package, 315 

Wood 2017) and a machine learning model (boosted regression tree, BRT; gbm R package, Elith 316 

et al. 2008). All SDMs were constructed as delta models, in which separate models are used to 317 

model the encounter probability (presence-absence) and the expected abundance conditional on 318 

encounter. All SDMs were trained on data from years 1985-2010, which we refer to as the 319 

‘historical’ period, and then the fitted models were used to predict species biomass using 320 

projected environmental data for years 2011-2100. The SDMs were fit including three 321 

environmental covariates (SST, MLD, surface chlorophyll-a) (Table S2). We use surface 322 

chlorophyll-a instead of the distribution of prey or zooplankton to avoid a perfectly specified 323 

model and mimic real-world conditions where some environmental correlates are imperfectly 324 

known. The distribution of the virtual species in the OM is directly influenced by SST, MLD, 325 

and the distribution of its prey species which is influenced by zooplankton and SST. The SDMs 326 

include SST and MLD, but include surface chlorophyll-a as an indirect and imperfect proxy for 327 

prey or zooplankton. Because satellite-derived chlorophyll-a data are typically available (and 328 

prey and zooplankton data are not), this also approximates how similar models might be applied 329 

in a real-world scenario. 330 

 331 

We evaluated the impact of alternative parameter configurations, such as including space 332 

and time covariates, on the relative influence of the different sampling scenarios on SDM 333 

performance (see Table S2 for the alternative configurations explored), but including these 334 

covariates added little to explained information (Table S2), and did not improve the spatial 335 

patterning in residuals (Fig. S1), or alter the relative impact of the different sampling scenarios 336 

on model performance (Fig. S2). This was likely due to the fact that the structure of our 337 

operating model could be well explained by dynamic ocean variables, and did not contain much 338 
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spatially-structured residual information, such as known spawning grounds. Therefore, we only 339 

present and discuss the results of the BRT and GAM environmental covariate models throughout 340 

the rest of this paper.    341 

 342 

Assessment of Climatic Bias in the Sampling Scenarios 343 

In order to assess the potential biases in estimates of environmental conditions created by 344 

fishery-dependent sampling, we assess both the climatic bias and climatic novelty. The climatic 345 

bias compares the sampled environmental conditions to environmental conditions throughout the 346 

entire ROMS domain during the historical sampling period (1985-2010). Climatic novelty is a 347 

measure of how similar the environmental conditions captured in each of the sampling scenarios 348 

are to the projected future environmental conditions present across the entire domain (i.e., a 349 

measure of extrapolation).  350 

 351 

 We used two metrics to obtain climatic bias and novelty, Cohen’s d (cd) and Hellinger 352 

Distance (HD). Cohen's d is a measure of the distance between the means of two groups, while 353 

the HD is a measure of the difference between two probability distributions (see Legendre & 354 

Legendre 2012; Supplemental Methods for formulas). The HD measures how much information 355 

is contained in one distribution relative to another with values in the range [0,1]. Values of HD = 356 

1 indicates that the two distributions have no common information (e.g., no data overlap), 357 

whereas values of HD = 0 indicates that the two distributions have the same information (e.g., 358 

complete data overlap). Johnson and Watson (2021) propose HD values > 0.5 as a threshold of 359 

novelty, where the distributions become more dissimilar than they are similar. We used both of 360 

these two metrics because while Cohen’s d can quantify the direction and magnitude of the 361 

difference between means, it does not capture differences in the shape of the distributions. In 362 

contrast, though HD does not capture the direction of the difference, it can measure differences 363 

in the mean and shape of distributions. Therefore, the two metrics combine to provide an overall 364 

picture of the climatic bias and novelty.  365 

 366 

Model Performance: predicting abundance, center of gravity, and spatial distribution 367 

Model estimates for species abundance and center of gravity were compared to the 368 

simulated data, which represents the known truth, and fit and performance were evaluated using 369 
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several metrics, including root mean squared error (RMSE) and Spearman correlation coefficient 370 

for continuous metrics, and the area under the receiver operating characteristic curve (AUC) for 371 

the presence/absence portions of the SDMs. AUC is a common metric to assess SDM accuracy, 372 

with values > 0.75 suggesting the model provides good discrimination between locations where 373 

the species is present and where it is absent (Elith et al. 2006). SDM outputs were also compared 374 

by visually examining the predicted spatial distributions, and the model response curves for each 375 

environmental covariate (Supplementary material). For comparing performance through time, we 376 

broke the future period into three timeframes, early-century (2011-2039), mid-century (2040-377 

2069) and late-century (2070-2100).     378 

RESULTS 379 

Environmental Variability, Sampling Scenario Climatic Bias, and Novelty 380 

The environmental variables used in the operating and estimation models exhibited both 381 

spatial and temporal variability. Surface chlorophyll, zooplankton, and MLD showed a 382 

nearshore-offshore gradient, with surface chlorophyll and zooplankton concentrations being 383 

greater nearshore, while MLD was greater offshore (Fig. 3). Temperature exhibited a north-south 384 

gradient, with higher temperatures in the southern portion of the domain during the historical 385 

period, but increasing throughout the domain during the future period (Fig. 3). In general, MLD, 386 

zooplankton, and surface chlorophyll all decreased during the projection period (Fig. 3). The 387 

simulated species biomass built using these environmental variables (i.e., in the operating model) 388 

also showed strong spatial patterning, and was higher in southern and offshore waters. During 389 

the projection period, biomass of the simulated species increased in the northern part of the 390 

domain and decreased in the southern portion.  391 

 392 

 The geographic spatial pattern of the different sampling scenarios varied within the 393 

ROMS domain (Table 1, Fig. 4), leading to differences in the environmental conditions captured 394 

in their samples. The random sampling scenario, not surprisingly, covered the largest geographic 395 

area, covering almost 90% of the ROMS domain (Table 1, Fig. 4,), resulting in a wide range of 396 

environmental conditions being sampled, and the lowest climatic biases across all environmental 397 

parameters (Table 1, Fig. 5). The most biased designs were the distance from port sampling 398 

scenarios, particularly the Northern Ports Only and Southern Ports Only sampling regimes, 399 
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followed by the nearshore pair of the Middle Ports and All Ports Only scenarios (Table 1, Fig. 5). 400 

These sampling scenarios were the most limited in their geographical coverage, being restricted 401 

latitudinally and/or longitudinally (i.e., in the nearshore-offshore direction). Additionally, the 402 

Northern Ports Only sampling scenarios were cold-biased (cd = 0.47 and cd = 0.73) with greater 403 

sampling effort at the low temperatures and poor sampling at the high temperatures, whereas the 404 

Southern Ports Only sampling scenarios were warm-biased (cd = -0.71 and cd = -0.97) (Table 1, 405 

Fig. 5, Fig S2) with greater sampling at the high temperature extremes.  406 

  407 

In general the environmental conditions became increasingly novel over time relative to 408 

the environmental conditions represented in each sampling scenario during the historical period 409 

(Table 2, Fig. 5). For all sampling scenarios except Ports Southern Nearshore and Offshore, the 410 

climate novelty (HD and Cohen’s d) increased through time for chlorophyll and temperature, 411 

with the largest climate novelty occurring in the late-century period (Fig. 5, Fig S3-5; Table 2), 412 

while climate novelty (HD and Cohen’s d) for MLD remained low and relatively unchanged for 413 

all future time periods (Table 2).  In the early-century (2011-2039) environmental conditions 414 

were novel for at least one environmental variable used in the estimation model relative to the 415 

conditions captured by three of the sampling scenarios, Ports Northern Nearshore, Ports Northern 416 

Offshore, and Port Southern Nearshore. In the mid-century (2040-2069) the conditions became 417 

less novel relative to the Port Southern Nearshore sampling data, but we saw the emergence of 418 

novel conditions relative to the Middle Ports Nearshore sampling scenario for two environmental 419 

variables (temperature and chlorophyll; Table 2) and an increase in novelty relative to the Ports 420 

Northern Nearshore and Offshore scenarios. By the late-century period (2070-2100), temperature 421 

conditions were approximately novel (HD ~ 0.5) and warmer (Fig. 5, bottom panel, Table 2) 422 

than captured by all of the sampling scenarios during the historical period. Additionally, 423 

conditions were novel for two environmental parameters (temperature and chlorophyll) for four 424 

sampling scenarios, Ports Northern Nearshore and Offshore, Port Middle Nearshore, and Ports 425 

All Nearshore during the late-century period (Table 2). The Ports Southern Nearshore and 426 

Offshore sampling scenarios are unique in that the HD was > 0.5 for temperature during the 427 

historical sampling period (Fig. 4, top panels), but then declines into the early- and mid-century, 428 

before increasing slightly again in the late-century period. While the southern sampling scenarios 429 
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were warm biased relative to historical temperatures throughout the entire prediction domain, 430 

those warm biased temperatures become more representative of the full domain in the future.  431 

 432 

SDM Model Fit and Predictive Skill 433 

 SDMs generally fit well to the presence-absence training data generated from the 434 

simulated fishery-independent and fishery-dependent sampling scenarios with all AUCs > 0.78 435 

for the BRTs (Araujo et al. 2005; Table 1). However, there was a noticeable difference in the 436 

predictive performance for models fit to data from the Southern Nearshore and Offshore 437 

sampling scenarios, particularly for the GAMs. Most sampling scenarios tracked the true 438 

abundance well during the historical period, except for the two Southern Ports Only scenarios 439 

which overestimated the true abundance (Fig. 6). The Ports Southern Nearshore model had the 440 

lowest AUC values (0.54 and 0.78 for the GAM and BRT respectively; Table 1). One would not 441 

normally project a model which had an AUC of 0.54 as that indicates poor fit (Elith et al. 2006; 442 

Araujo et al. 2005; Swets 1988), however, we retained the model for the purposes of this 443 

simulation.      444 

 445 

The ability of the SDMs to replicate the known environmental affinities of the simulated 446 

species was best for models fit with the less climatically-biased sampling designs (Figs. S7-S14). 447 

However, only the Random and Ports Southern Nearshore sampling scenarios were able to 448 

predict the dome response curve for temperature, while other scenarios overpredicted the 449 

positive impact of high temperatures on the virtual species abundance (Fig S7-S8). The fitted 450 

response curves generated through all other scenarios showed increasing positive partial effects 451 

on biomass at high temperatures, instead of the decline observed in the true species response 452 

curves above 17 degrees C. This result was most pronounced for the Ports Northern Offshore, 453 

Northern Nearshore, and Middle Nearshore sampling scenarios, which is likely due to the fact 454 

that these scenarios sampled were cold-biased (positive cohen’s d; Table 1), sampling only low 455 

to mid temperature waters, and did not capture the higher temperature ranges. Models fit to data 456 

from the Ports Southern Nearshore scenario, however, were better able to capture the species 457 

temperature preferences at higher temperatures, but not at lower temperatures (Fig S6-S7).  458 
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 459 

SDM Projection Performance 460 

 In our study, model performance (RMSE) tended to decline with increasing HD (Figure 461 

S15), and in general, SDM performance (as determined by RMSE, correlation, model 462 

uncertainty, and spatial error) was the worst during the period when climatic bias and novelty 463 

was greatest. For most scenarios this occurred during the late-century period, but for the two 464 

Southern Ports Only scenarios it was during the historical training period.  465 

 466 

Many of the models fit to data collected from a fishery-dependent sampling scenario 467 

(Preferential, Bycatch, Closed Area Small, Closed Area Medium, Closed Area Large, Ports All 468 

Offshore, Ports Middle Offshore) performed comparably to the Random sampling scenario, 469 

tracking the true biomass well during the early- and mid-century projection periods (Table 3, Fig 470 

6a,b). However, these sampling scenarios exhibited a more pronounced decline in performance 471 

(increasing RMSE (Table 3, Fig S16), decreasing correlation (Fig S17), and increasing 472 

uncertainty (Fig S18)) during the late-century period compared with the random sampling 473 

scenario (Table 3). Models built with more climatically biased training data performed less well. 474 

The worst performing models were those fit to data collected from the Ports Northern Nearshore, 475 

Ports Northern Offshore, Ports Middle Nearshore, Ports Southern Nearshore, and Ports Southern 476 

Offshore sampling scenarios (Table 3, Fig. 6a,b). An interesting observation, however, is that 477 

while performance declined throughout the projection period for Ports Northern Nearshore, Ports 478 

Northern Offshore, and Ports Middle Nearshore, it improved somewhat for the Ports Southern 479 

Offshore and Ports Southern Nearshore scenarios, probably because environmental conditions 480 

were actually becoming less novel (compared to those sampled) for the southern sampling 481 

scenarios.  482 

 483 

Models that were best able to track biomass during the early and mid-century periods 484 

were also best able to track the true center of gravity during the early-century and beginning of 485 

the middle-century periods (Preferential, Bycatch, Closed Area Small, Closed Area Medium, 486 

Closed Area Large, Ports All Offshore, Ports Middle Offshore; Fig. 7a,b). These models 487 

predicted center of gravities within 1 degree latitude on average of the true center of gravity 488 

through the early and mid-century, before diverging from the true center of gravity trend and 489 
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beginning to underestimate the northward shift by more than 1 degree during the late-century 490 

periods (Fig. 7b). The most highly climatically biased scenarios (Ports Middle Nearshore, Port 491 

Northern Nearshore, and Port Northern Offshore) on the other hand began underestimating the 492 

true center of gravity by more than 1 degree starting in the mid-century and by the late-century 493 

they underestimated the true center of gravity by as much as 2.4-3.2 degrees. The Southern 494 

Nearshore and Offshore scenarios were unique in that they overestimated the center of gravity by 495 

almost 2.6-2.7 degrees during the historic period and then underestimated the center of gravity 496 

throughout the future periods (Fig 6b).  497 

 498 

Spatially explicit predictions of biomass were also comparatively similar across sampling 499 

procedures and resembled the true abundance distribution during the historical and early and 500 

mid-century future periods (Fig. 8; Figs S19-S22). In the late-century period, all sampling 501 

scenarios overpredicted the true biomass in the southern, warmer part of the CCS. The exception 502 

to this was models fit to data collected under the Ports Northern Nearshore, Ports Northern 503 

Offshore, Ports Middle Nearshore and Ports All Nearshore sampling scenarios, which 504 

overpredict the biomass of the species in the southern part of the ROMS domain throughout the 505 

entire time series, with the greatest overpredictions in the late-century period. Additionally, 506 

models fit with data collected under the Ports Southern Nearshore and Offshore sampling 507 

scenarios overpredict the biomass in the northern part of the domain throughout the time period 508 

(Fig. 8, Figs S19-S22), as well as overpredicting the biomass in the southern part in the middle- 509 

and late-century. Again, this likely occurred because models fit with Southern Ports Only data do 510 

not accurately represent the species temperature response curve at lower temperatures; similarly, 511 

models fit using the other sampling scenarios do not accurately represent the species temperature 512 

response curve at intermediate and higher temperatures, and this is particularly true for the two 513 

Northern Only and the Middle Nearshore Ports scenarios.  514 

DISCUSSION 515 

As climate change leads to increasingly novel ocean conditions (Gruber et al 2021; Smith 516 

et al. 2022), it is important to understand how fish and other marine organisms will respond to 517 

those changes. Realistic projections of potential future species distributions are important to 518 

categorize species responses, and to be able to prepare for and sustainably manage for 519 
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distribution shifts. However, there is limited understanding of how well models perform when 520 

projecting decades into the future, particularly when training data come from varied sources, 521 

such as with fishery-dependent data. In this study we showed that use of non-randomly sampled 522 

data can have relatively minor impact on SDM performance for near- to medium-term 523 

projections as long as it samples well the underlying environmental conditions present. We 524 

further established that, regardless of sampling design, SDM performance tends to degrade for 525 

long-term projections (RMSE = 5.5 - 8.6 vs. RMSE = 5.3 - 12.6, during early- and late-century 526 

respectively), due to the higher climatic novelty of the future environmental conditions relative 527 

to the sampling data.  528 

 529 

Differences Among Sampling Scenarios 530 

 531 
A major concern with fishery-dependent data used to estimate species distributions is the 532 

potential biases due to the unequal sampling, as fishers tend to preferentially target locations 533 

with high density of specific fishes and respond to external economic and management factors 534 

rather than randomly sampling. However, our results show that data generated from fishery-535 

dependent sampling can still result in SDMs with performance comparable to SDMs generated 536 

from random samples several decades into the future, given specific forms of preferential 537 

sampling which result in low climate bias and novelty (e.g., HD < 0.5). Preferential, Closed 538 

Areas, Bycatch, and Ports Middle Offshore, Ports All Offshore all had low climate bias in the 539 

training data, and models fit to these data performed similarly to each other, and to the Random 540 

sampling scenario before degrading around mid- to late-century (e.g., RMSE 5.55 - 6.99 vs 5.47 541 

- 5.5  respectively). On the other hand, the Southern Ports Only and Northern Ports Only 542 

scenarios had the highest climate bias or novelty and performed poorly throughout the projection 543 

period. By evaluating our range of scenarios, generalizations can be made about the causes of 544 

poor SDM performance and magnitude resulting from biased sampling. These generalizations 545 

relate to how well fishery-dependent data leads to correctly specified species-climate response 546 

curves, and how well these data represent the environmental conditions that exist in the data set 547 

used for prediction. 548 

 549 
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Our findings were consistent with numerous studies which show that restricting the 550 

range, and particularly the extremes, of environmental data present in a sample can affect the 551 

calculation of species-climate response curves, and can lead to erroneous projections (Thuiller et 552 

al. 2004, Hortal et al. 2008, Tessarolo et al. 2014, Stoa et al. 2018, Nazzaro et al. 2021). This is 553 

likely to occur in systems with strong geographic or temporal gradients in environmental 554 

variables when only a portion of the domain or a portion of the habitat or only certain seasons or 555 

years are sampled. For example, this was particularly evident for the Northern Ports Only and 556 

Southern Ports Only scenarios, where the environmental range covered in the samples was 557 

restricted to either cold (northern ports) or warm (southern ports) waters. This led to inaccurate 558 

prediction of the species responses to warm temperatures for the northern ports scenario, and to 559 

cold temperatures for the southern port scenario. If a response to a particular environmental 560 

covariate is non-linear (e.g. our domed preference for SST, Table S1), high sampling coverage 561 

across a range of covariate values may be required to fit that response correctly. Often there will 562 

be reduced data coverage and increased model uncertainty at the limits of this response. This 563 

uncertainty will be exacerbated if extrapolation of this response is required during prediction or 564 

projection, which can be seen in our study in Figure S18. Therefore, one should be careful or 565 

critical when an estimated relationship to an environmental variable is approximately linear 566 

across the training data, particularly if it is a positive linear relationship.  567 

 568 

Training data quality is also acknowledged to be a key issue determining the 569 

transferability of SDMs to novel locations or environments (Elith & Leathwick 2009; Yates et al. 570 

2018). We measure this as both climatic bias (how well the historical climate was sampled in our 571 

domain of interest) and climatic novelty (how well the sampled historical climate represents 572 

future conditions used for projection). We also estimated the spatial area covered by each 573 

sampling scenario (Figure 4), and this tended to be a good indicator of the subsequent climatic 574 

bias, with scenarios that sampled a higher proportion of the ROMS domain, tending to have 575 

lower climatic bias of the sample; however, this was not always the case (Table 1). This is 576 

consistent with previous studies which conclude that the underlying environmental conditions 577 

sampled is more important than the spatial structure of samples in terms of effecting SDM 578 

performance (Tessarolo et al. 2014), and supports the use of a climatic bias measure, such as the 579 
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HD, as a metric of data quality and potential indicator of SDM performance rather than the 580 

spatial coverage of a sample set.  581 

 582 

Higher climatic bias in the sample data led to either poorly fit models (e.g., Southern Port 583 

Nearshore, AUC = 0.53, RMSE average = 9.34) and/or poor performance, and more quickly 584 

degrading performance, when projecting into future, novel conditions. Models fit to data from 585 

sampling scenarios with high climatic bias during the training period (Northern and Southern 586 

Ports only, Middle Nearshore, and All Nearshore) resulted in RMSEs during the early and mid-587 

century period that were 14-75% greater relative to random sampling, whereas the less 588 

climatically biased scenarios resulted in RMSE that were only 1-18% greater compared to the 589 

random sampling scenario. By the late century period all SDMs except for those fit to the 590 

Random sampling scenario showed declining performance; however this decline in performance 591 

was greater for the more climatically biased sampling with RMSE increasing to 33-128% greater 592 

than the random sample compared with only 11-56% greater for less biased scenarios. This 593 

suggests that SDMs will likely show degrading performance over time given high climatic 594 

novelty in future periods, although random sampling can help mitigate this (Fig. 6; Table 3). We 595 

note that the amount of extrapolation into the future, and thus the impact on model predictive 596 

skill, varies among climate models (see Brodie et al. 2022) and scenarios. In our simulation we 597 

used the HadGEM2-ES ESM, which exhibits some of the fastest warming and productivity 598 

declines for the CCS (Pozo Buil et al., 2021) and thus higher novelty (Smith et al, in press). 599 

Thus, while in our study SDM projection performance began to degrade mid-century for many 600 

scenarios, other studies may see performance degrade earlier or later depending on which ESM 601 

is used (Brodie et al., 2022). Our results suggest that this degradation in performance may occur 602 

when the conditions for at least one climatic variable used in the model become more dissimilar 603 

than similar (i.e. HD ~ 0.5) to the conditions represented in the training data. 604 

 605 

Our results are based on a simplified simulation framework designed to test the predictive 606 

performance of SDMs fit to simulated fishery-dependent data, and as such there are several 607 

important assumptions and caveats to note. First, the scenarios simulated in our study are a 608 

simplified version of fishery-dependent data collection. There are several factors that we have 609 

not captured in our simulation which can impact both where and how much fishermen catch 610 
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(e.g., density dependence, interspecific interactions, catchability, fisher behavior, market 611 

dynamics), and therefore the relative bias and performance of models fit to that data. Future 612 

studies could work to incorporate these dynamics into simulations. Additionally, we simulated a 613 

mobile pelagic species, which has the advantage of not having to consider benthic habitat 614 

requirements (the animal can just move to follow favorable conditions). Simulating benthic or 615 

demersal species realistically might be more difficult. Additionally, how a species is distributed 616 

in space and time can be determined by more than just environmental conditions. Other 617 

important drivers could include, life history and the complexity of the life cycle, the presence of 618 

specific habitat requirements, trophic interactions, and competition. For example, a diadromous 619 

species exhibiting natal homing may have clear thermal and other environmental preferences but 620 

have less ability to shift its distribution than a species which completes its entire lifecycle in the 621 

epipelagic zone. Exploring the impact of these additional drivers of species distributions on SDM 622 

performance given different sampling scenarios is beyond the scope of this study, but may be a 623 

fruitful endeavor for future simulations. Lastly, while our simulation focuses on the CCS, the 624 

general conclusions with regard to the relationship between the climatic bias of the training data 625 

and climatic novelty of the future conditions and performance of SDMs can be of use to other 626 

systems. However, we would expect that the specific sampling patterns that may lead to 627 

climatically biased data will depend on the spatial gradient of the environmental conditions and 628 

factors influencing species distributions and fishing patterns within a specific system.  629 

 630 

Applications and Recommendations 631 

 632 
Although fishery-dependent data are inherently biased, they can still be useful for SDMs 633 

and projection, especially if we can account for this bias through careful model specification or 634 

by restricting predictions to the geographical or environmental space covered by the model 635 

training data (e.g., Crear et al. 2021). For example, warming is one of the key climate drivers in 636 

long term projections. If our fishery-dependent observations cover a broad range of a species’ 637 

thermal tolerance, and if the behavior of the SDM near the upper thermal limit corresponds well 638 

with known physiological limits, then projections of habitat change due to warming are likely to 639 

be more accurate. This also applies to other important environmental drivers, such as dissolved 640 

oxygen and pH, and is in line with Elith et al. (2011) and Stoa et al. (2018) which posit that good 641 
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SDM performance relies on the distribution of the sampling effort being proportional to the 642 

actual frequency distribution of environmental conditions along all environmental variables of 643 

importance to the species; which can be indicated through the use of the HD and cd as done in 644 

this study. On the other hand, an SDM is less likely to provide realistic projections if the 645 

observations sample a relatively small portion of the species geographic or environmental range, 646 

if detectability on fishing gear is imperfect or inconsistent, or if SDM covariates do not represent 647 

key processes well (such as obligate prey following or other trophic interactions that are not 648 

directly linked to environmental variables).  649 

We have shown that climatic bias and novelty are useful measures of impact of available 650 

observations on the performance of SDM projections. These or similar metrics (Mesgaran et al. 651 

2014, Meyer and Pebesma et al. 2021, Smith et al. 2022) are critical components of projection 652 

studies because they allow estimation of how no-analog environmental conditions relate to 653 

predictive skill. However, consideration of how different modeling methods behave when 654 

extrapolated is also essential, as some are better suited to extrapolation. The two methods used in 655 

this study (BRTs and GAMs) predict to novel conditions differently. GAMs (depending on how 656 

they are parameterized) can continue fitted trends into new environments, whereas BRTs assume 657 

a constant relationship outside of the training data range (Zurrell et al. 2012). Our results show 658 

that GAM and BRT projections often diverged strongly towards the end of the 21st century for 659 

more biased sampling scenarios, as environmental conditions became more novel. Although this 660 

is particular to our study, projections from BRTs were generally closer to the simulated truth, 661 

probably because of their more conservative behavior under extrapolation. Other studies (e.g. 662 

Zurrell et al. 2012; Moore et al. 2016; Derville et al. 2017) indicate that BRTs do not always 663 

outperform GAMs, and that the best SDM for a particular purpose tends to be highly species- 664 

and ecosystem-specific. Overall, the use of an ensemble of different SDMs is likely useful for 665 

capturing some of the uncertainty contributed by model extrapolation behavior when predicting 666 

in novel environments. Predictions from different types or parameterizations of SDMs can be 667 

ensembled, and weighted based on some measure of model fit or uncertainty (e.g., Yao et al. 668 

2018) 669 

 670 

Accounting for bias in fishery-dependent data through model specification has a rich 671 

history, driven by models aimed at catch-per-unit-effort standardization and calculating 672 
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abundance indices (Thorson et al. 2020, Maunder and Punt 2004). Spatial and temporal biases in 673 

these data (such as a spatial shift in fishing effort) are often accounted for by including spatial 674 

and temporal covariates (Ducharme-Barth et al. 2022), which are used to explain unknown 675 

biological processes, or to act as latent variables to explain residual dependencies. These studies 676 

focus on standardizing observed data to explain historic patterns of spatial distributions and 677 

abundance. However, these spatial-temporal standardization tools may be unsuitable for long 678 

term projection of species distributions, given that static spatial surfaces and covariates 679 

incorporating year effects used to explain the past may not extrapolate well to future conditions. 680 

Indeed, some covariates can act as surrogates for variables or processes that may diverge over 681 

time and result in poor projections of species distributions. And yet, the benefits of spatial-682 

temporal modeling not only include the potential to reduce bias in fishery-dependent 683 

observations, but also the ‘borrowing’ of nearby information to improve the accuracy of spatial-684 

temporal extrapolation (Thorson 2019 [VAST]; Brodie et al. 2020). We note that when we 685 

evaluated the impact of including space and time covariates on the relative influence of the 686 

different sampling scenarios on SDM performance, including these covariates added little to 687 

explained information (Table S3), and did not improve the spatial residual pattern (Fig. S1) or 688 

alter the relative impact of the different sampling scenarios on model performance (Fig S2). 689 

However, there is potential for other parameterizations of the space and time covariates to have 690 

different results, and considering the potential benefits and successes in reducing bias seen in 691 

other studies, further exploring the use of spatio-temporal modeling for SDMs using fishery-692 

dependent data is still warranted. Another approach that has shown promise to reduce bias from 693 

preferential sampling data is to use a modeling framework where the state variable of interest 694 

(e.g., population biomass or abundance) and the sites chosen for sampling are jointly modeled 695 

using a dependence covariance matrix (Conn and Thorson 2017). Future work could also 696 

consider this analytical approach to explicitly account for biases from fishery-dependent 697 

sampling.  698 

 699 

The challenge remains, then, to decide how much extrapolation in time (years or seasons) 700 

or space is acceptable, and these variables can be included in measures of novelty (Smith et al. 701 

2022) to aid this decision. However, in terms of projecting into novel conditions, geographic and 702 

temporal separation between the reference and target system appears less important compared 703 
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with environmental dissimilarity (Yates et al. 2018). In this paper we show how Hellinger 704 

Distance can be used as a measure of this environmental dissimilarity, with values around the 0.5 705 

threshold proposed by Johnson and Watson (2022) serving as an indication of when projections 706 

(transferability) may become problematic.  Again, we note that the amount of extrapolation into 707 

the future that might be appropriate may vary among climate models, and exploring the 708 

dissimilarity (or similarity) in future climate projections could be informative to future 709 

management scenario planning. 710 

 711 
When projecting SDMs built from fishery-dependent data, we recommend to: 1) collect 712 

training data from the broadest range of environmental conditions relevant for a species (Pennino 713 

et al. 2016), which may require combining fishery-independent and dependent data sets (e.g. 714 

Rufener et al 2021, Alglave et al. 2022); 2) use one or more diagnostics to identify biased data, 715 

severe extrapolation, and potentially inaccurate predictions (e.g., our Hellinger D threshold); 3) 716 

evaluate the plausibility of the partial species-climate responses, especially at the limits of the 717 

fitted data and when extrapolated to novel data; 4) explore spatio-temporal modeling, and other 718 

analytical approaches, to reduce bias in training data, but evaluate the benefits against the 719 

reduced flexibility of spatial-temporal variables for long-term projection; 5) measure and 720 

communicate uncertainty of projections, but recognize that if data are biased and a model is 721 

poorly specified then uncertainty may be underestimated.  722 

CONCLUSION 723 

We show that SDMs built using data collected from a simulated fishery can produce 724 

projections of species distributions similar to SDMs fit with data collected from a random 725 

sampling scheme, as long as the sampling adequately captures the underlying environmental 726 

conditions present in the prediction domain. Being able to diagnose and understand when 727 

fishery-dependent data is of high enough quality (e.g., low climate bias and novelty, in addition 728 

to accurate location and catch reporting) to produce accurate predictions can help open the door 729 

for scientists and managers to use more of the observational data available to them, and to more 730 

fully understand the uncertainty associated with using this data for predictions and projections of 731 

species distributions.  732 

 733 
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The use of fishery-dependent data, either on its own or in conjunction with fishery-734 

independent data, has several benefits. For example, fishery dependent data are often collected at 735 

higher spatial and temporal resolutions than fishery independent survey data. Unbiased fishery 736 

dependent data (e.g., with low climate bias and novelty), or fishery-dependent data bias corrected 737 

through the use of spatio-temporal modeling as discussed above or other bias correction 738 

approaches, may thus be our best way of linking fish distributions to seasonal and spatial 739 

processes such as physical drivers of recruitment (e.g., preconditioning of mature females; 740 

Tolimieri et al. 2018, Haltuch et al. 2020) or seasonal/long term changes in habitat characteristics 741 

like temperature, dissolved oxygen, stratification, seascape characteristics (Pennino et al. 2016). 742 

Additionally, having distribution data from many seasons will help to parameterize seasonal 743 

species distribution expectations in end-to-end models that support ecosystem-scale management 744 

strategy evaluations, e.g., focused on robustness of management structure to species distribution 745 

shifts driven by climate events and climate change (Kaplan et al. 2021). Synthesizing outcomes 746 

across fishery-dependent and independent data can help support the Ecosystem-Approach to 747 

Fisheries Management (EAFM) or Ecosystem-Based Fisheries Management (EBFM), through 748 

incorporating fishers’ knowledge (e.g., local ecological knowledge) along with any additional 749 

data they may be able to collect in the future as ships-of-opportunity for monitoring 750 

environmental conditions. Finally, as costs and financial resources for fishery-independent 751 

surveys are increasingly limited in many areas, fishery-dependent data may be able to 752 

supplement information from surveys that are reduced or eliminated for budgetary reasons 753 

(though not without potential cost to the usefulness of the data). 754 

 755 

DATA AVAILABILITY 756 

The ROMS-NEMUCSC projection data were developed by Pozo Buil et al. 2021, and are 757 

available upon request from Mercedes Pozo Buil, or from NOAA’s ERDDAP data servers at the 758 

following URL:  759 

https://oceanview.pfeg.noaa.gov/erddap/search/index.html?&searchFor=CCS+ROMS. The R 760 

code to run the simulation can be found on GitHub (https://github.com/Melissa-Karp/Fishery-761 

dependent-SDM-projections).  762 

 763 

https://oceanview.pfeg.noaa.gov/erddap/search/index.html?&searchFor=CCS+ROMS
https://github.com/Melissa-Karp/Fishery-dependent-SDM-projections
https://github.com/Melissa-Karp/Fishery-dependent-SDM-projections
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TABLES AND FIGURES 1023 

Table 1: Model fit and performance (AUC, RMSE, COR), climatic bias during historical 1024 
training period 1985-2010 for all environmental parameters and sampling scenarios, and the 1025 
proportion of the ROMS sampling domain covered by each sampling scenario.  1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

GAMs BRTs GAMs BRTs GAMs BRTs HD Cohen's d HD Cohen's d HD Cohen's d
Random 0.92 0.92 5.09 5.10 0.77 0.77 0.03 -0.07 0.05 0.06 0.03 -0.03 89.80%
Preferential 0.91 0.90 5.10 5.39 0.77 0.75 0.41 -0.41 0.23 -0.20 0.17 0.05 50.18%
Port Southern Offshore 0.84 0.77 6.60 8.85 0.72 0.55 0.51 -0.71 0.29 -0.32 0.26 0.39 11.55%
Port Southern Nearshore 0.54 0.78 8.06 10.61 0.69 0.46 0.55 -0.97 0.32 -0.18 0.43 0.87 7.97%
Port Northern Offshore 0.89 0.86 5.84 6.78 0.72 0.65 0.50 0.47 0.36 -0.45 0.25 0.23 27.25%
Port Northern Nearshore 0.90 0.85 5.67 6.31 0.74 0.67 0.54 0.73 0.40 -0.50 0.35 0.55 20.28%
Port Middle Offshore 0.91 0.88 5.15 5.61 0.76 0.72 0.47 -0.22 0.30 -0.42 0.21 0.08 24.70%
Port Middle Nearshore 0.89 0.87 5.47 5.84 0.74 0.71 0.49 0.07 0.45 -0.85 0.25 0.21 12.11%
Port All Offshore 0.91 0.90 5.12 5.37 0.77 0.75 0.40 -0.40 0.28 -0.35 0.20 0.19 30.17%
Port All Nearshore 0.90 0.87 5.48 5.94 0.75 0.71 0.33 -0.17 0.37 -0.68 0.23 0.40 23.37%
Closed Area Small 0.91 0.89 5.09 5.44 0.77 0.74 0.41 -0.46 0.23 -0.17 0.16 0.07 48.35%
Closed Area Medium 0.91 0.90 5.07 5.26 0.77 0.75 0.42 -0.52 0.23 -0.10 0.16 0.06 40.70%
Closed Area Large 0.91 0.90 5.13 5.31 0.77 0.75 0.44 -0.61 0.24 -0.07 0.16 0.12 33.88%
Bycatch 0.91 0.90 5.23 5.42 0.77 0.75 0.37 -0.40 0.23 0.04 0.16 -0.12 52.53%

Proportion 
area covered

MLD
Measures of Climatic Bias 

Sampling Scenario
AUC (P)

SST Chlorophyl
RMSE COR
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Table 2: Hellinger distance (HD) for all environmental parameters, sampling scenarios, and 1042 
future time periods. The HD for the future periods provides an indication of the novelty of the 1043 
environments during those future periods relative to the environment conditions captured by 1044 
each sampling scenario during the historical period. Greener colors represent low climate 1045 
novelty while redder colors represent greater climate novelty when comparing the 1046 
environmental conditions sampled in the historical period to the future period. 1047 
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Table 3: Root mean squared error (RMSE) of modeled and ‘true’ biomass, by time period and 1060 
sampling scenario. Greener colors reflect lower errors, redder colors reflect higher errors. 1061 
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FIGURE CAPTIONS: 1073 

Figure 1. Map of the study area, showing the entire ROMS domain. The black outline off the 1074 
coast of California (CA), Oregon (OR), and Washington (WA) indicates the United States 1075 
Exclusive Economic Zone (EEZ). The ports used for the distance from port sampling scenarios 1076 
are labeled and indicated with black squares on the map.  1077 

Figure 2. Flow diagram illustrating the 4 main steps of the simulation process. 1078 

Figure 3: Maps and time-series of dynamically downscaled environmental covariates projected 1079 
to 2100. Maps show the average historical spring conditions for the dynamically downscaled 1080 
environmental and biological covariates used in the operating model and/or the estimation 1081 
models (mixed layer depth, SST, zooplankton, prey abundance, and chl surface), and distribution 1082 
of the simulated species biomass (kg) from 1985-2010. The time-series plots show the spatially 1083 
aggregated average annual spring conditions for the entire simulation time period (1985-2100). 1084 
The red vertical line at 2010 indicates the beginning of the forecast period, and the red vertical 1085 
line at 2070 indicates beginning of the late-century period. The dashed lines represent the mean 1086 
+/- 1 SD.   1087 

Figure 4: Sampling locations for each sampling scenario during the training period 1985-2010 1088 
used to fit the estimation models. The black dots indicate the locations of the ports used for the 1089 
distance from ports scenarios. The percentages shown in each facet indicate the percentage of the 1090 
ROMS domain covered by each sampling scenario based on the area of a concave hull around 1091 
each set of sampling points.  1092 
 1093 
Figure 5: Physical Climate Bias (top row) and Climate Novelty (bottom three rows) as a 1094 
function of Sampling Scenario. Difference in mean value (Cohen’s D) versus difference in the 1095 
sampling distribution compared to the distribution of the environmental conditions across the 1096 
entire domain (Hellinger distance). Sampling data with a distribution of climate values identical 1097 
to the climate values across the domain would be located at (0, 0). The size of each point is 1098 
scaled by the RMSE each time period averaged over the GAM and BRT models for each 1099 
sampling scenario. Negative values of Cohen’s D (to the right of the vertical line at x=0) indicate 1100 
that the mean value for a parameter is greater in the sampling scenario compared to the full 1101 
domain. The horizontal line at y=0.5 indicates the threshold for novelty.  1102 
 1103 
Figure 6: Biomass time series for 1985-2100 showing the true biomass, each of the 14 scenarios 1104 
for the GAMs and BRTs (a) and the difference between the true biomass and biomass predicted 1105 
with each of the scenarios across the time series (b).  1106 
 1107 
Figure 7: Latitudinal center of gravity time series for 1985-2100 showing the latitudinal center 1108 
of gravity, each of the 14 scenarios for the GAMs and BRTs (a) and the difference between the 1109 
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true center of gravity and center of gravity predicted with each of the scenarios across the time 1110 
series (b).  1111 
 1112 
Figure 8: Maps of difference in the predicted species distribution averaged across the historical 1113 
period (1985-2010; top panel) and each of the future periods (2011-2039, 2040-2069, and 2070-1114 
2100). Here we show the spatial differences between the predicted distributions from two 1115 
sampling scenarios with low climate bias, the random and preferential sampling, and three 1116 
sampling scenarios with high climate bias, ports southern nearshore, ports middle nearshore, and 1117 
ports northern nearshore, fit with a GAM, compared with the true simulated distribution. See 1118 
Figs. S19-S22 to see spatial differences for all sampling scenarios. Red areas indicate areas 1119 
where the model overpredicts the biomass, and blue areas where the model underpredicts the 1120 
biomass.  1121 
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Supplementary Materials   

S1: Supplemental Methods 
 
Sampling Process: simulating fishery-dependent data collection  

For the Preferential sampling scenario, the fishing suitability raster resulted from a 

positive logistic function of the habitat suitability of the target species in the previous year (y-1). 

We used the y-1 suitability as fishermen often base their choice of where to fish on where they 

found the fish in the previous year (Sampson 1991). Therefore, we are using the habitat 

suitability in the previous year as a proxy of where the fishermen were likely to find the fish in 

the previous year for this analysis. We built the fishing suitability raster using beta βs (inflection 

points) for the logistic function of 0.7.  

 

For the Port scenarios, fishing suitability was a function of a positive logistic response to 

target species habitat suitability in the previous year, with a beta=0.7, and a negative logistic 

response to distance from port. We built fishing suitability rasters for 8 different distance from 

port scenarios. Two scenarios simulated situations where fishermen were limited to fishing 

around northern ports in Washington (Westport, WA -124.114934, 46.911534) and Oregon 

(Garibaldi, OR, -124.292000, 43.383975), two scenarios simulated fishermen being limited to 

fishing around ports within the middle of the ROMS domain (Santa Cruz, CA (-122.001620, 

36.965719), and Bodega Bay, CA (-123.050618, 38.334302)), two scenarios simulated fishing 

limited to fishing around a port in southern CA (San Diego Bay, CA (-117.1441, 32.6717)), and 

two scenarios included all ports. One of the scenarios for each port simulated an offshore fishery 

where fishing suitability was high up until about 300 miles from a port, and one scenario 

simulated a nearshore fishery where fishing suitability declines after about 50 miles from a port. 

The distance from each port to every cell in the raster was calculated using distanceFromPoints 

function in R. For the scenarios where more than one port was used, the lesser distance of each 

cell to the ports was used.    

 

For the Bycatch scenario, we simulated the distribution of a turtle-like bycatch species 

which we used to impact fishing location suitability. The simulated bycatch species preferred 

warmer temperatures than our target species, exhibiting a unimodal response to SST (mean=25, 



sd=10), and similar to the simulated prey species of our target species exhibited a positive 

logistic response to zooplankton abundance. The fishing location suitability was determined by a 

positive logistic function of target species habitat suitability in the previous year (with beta=0.7), 

and a negative logistic function of the bycatch species habitat suitability in the current year. This 

simulates a situation where fishermen actively avoid fishing in areas of high bycatch risk (high 

habitat suitability for bycatch species) but are still also attempting to fish in areas that have good 

habitat suitability for their target species (Smith et al. 2021, Hazen et al. 2018, Howell et al. 

2008).  

 

For the Closed Area scenario, fishing suitability was determined by multiplying the 

fishing suitability raster developed for the Preferential scenario with a beta=0.7 by a raster of 0s 

and 1s, where 0 values were for cells within the closed area. This effectively made it so cells 

within the closed area had a 0% chance of being sampled. We simulated fishing locations based 

on three different sizes of the closed area. The smallest closed area was a box with its corners at 

longitude and latitudes of -126, -118, 36, 41. The medium sized closed area had corners at -127, -

118, 35, 42, and the largest closed area at -129, -118, 34, 43. The largest closed area was similar 

in size and location to the seasonally closed Pacific Leatherback Conservation Area (PLCA) off 

the US west coast; the PLCA is intended to reduce incidental bycatch of endangered leatherback 

turtles (Dermochelys coriacea) (Urbisci et al 2016).  

 

Assessment of Climatic Bias in the Sampling Scenarios 
 We used two different metrics to obtain climatic bias and novelty, Cohen’s d and 

Hellinger Distance (HD). Cohen’s d is a measure of the difference between the means of two 

groups, and we calculated this using the below formula:  

d = (𝑀𝑀1 − 𝑀𝑀2)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆

 

Where M1 is the mean of the first sampling regime (e.g. SST in the partially sampled historical 

climate), and M2 is the mean for the second sampling regime being compared (e.g. SST in the 

full historical or future climate used for prediction), and the denominator is the pooled standard 

deviation. A value of d = 0.2 is generally considered a small difference or effect, 0.5 a medium, 

and 0.8 a large difference (Cohen 1988). The Hellinger distance is a measure of the difference 



between two probability distributions (see Legendre & Legendre 2012) and we calculate this 

using the below formula for each environmental parameter:  

H(P, Q) = 1
√2
�∑ (�𝑝𝑝𝑖𝑖 − �𝑞𝑞𝑖𝑖)2𝑘𝑘

𝑖𝑖=1   

Where pi is the probability distribution of the environmental parameter of interest in the entire 

sampling domain and qi is the probability distribution for that same environmental parameter for 

a particular sampling scenario. The HD measures how much information is contained in one 

distribution relative to another. With this metric the two distributions being compared become 

more similar as the difference in the proportion of sites at each value of the environmental 

covariate declines. HD values >0.5 have been proposed as a threshold of novelty, where the 

distributions become more dissimilar than they are similar (Johnson and Watson et al in prep).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1: Variable used to simulate species spatially explicit distribution and fishery-dependent 
sampling scenario suitability rasters. µ is the mean and σ the standard deviation for the normal 
response curves. For the logistic response curves, α is the scale parameter which controls the 
slope of the curve (the growth rate), and β is the location parameter specifying the time when 
curve reaches the midpoint of the growth/decline trajectory.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Suitability Raster Variable Description Parameter 1 Parameter 2 Distribution
SST Sea surface temperature μ = 17 σ = 4 normal
MLD Mid-layer depth μ = 50 σ = 30 normal
Prey presence Preference for prey α = -0.15 β = 0.4 logistic
Biomass (kg) Biomass if the species is present in a grid 

cell
log μ = 3.29 log (σ) = 0.26 Log normal

Occurrence (0 or 1) Occurrence as a function of habitat 
suitability 

α = -0.07 β = 0.4 logistic

SST Sea surface temperature μ = 14 σ = 7 normal
zoo_200m Zooplankton integrated over top 50m α = -10 β = 45 logistic
SST Sea surface temperature μ = 25 σ = 10 normal
zoo_200m Zooplankton integrated over top 50m α = -6 β = 50 logistic

Preferential HMS species presence t-1 HMS habitat suitability in the previous year α = -0.05 β = 0.7 logistic
HMS species presence t-1 HMS habitat suitability in the previous year α = -0.05 β = 0.7 logistic
max distance Controls how suitability declines in relation 

to distance from port
α = 50 β = 110 logistic

HMS species presence t-1 HMS habitat suitability in the previous year α = -0.05 β = 0.7 logistic
max distance Controls how suitability declines in relation 

to distance from port
α = 50 β = 480 logistic

HMS species presence t-1 HMS habitat suitability in the previous year α = -0.05 β = 0.7 logistic
Bycatch species presence Habitat suitability of a simulated bycatch 

species
α = 0.05 β = 0.5 logistic

Bycatch avoidance

HMS species archetype

Prey species

Bycatch species

Distance - Nearshore 
scenarios

Distance - Offshore 
scenarios



Table S2: Model formulation for the GAMs and BRTs fitted in the simulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S3: Deviance explained for the presence and abundance components of the GAMs and 
BRTs models for both those with only environmental covariates and the ones which included 
both environmental and space-time covariates.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GAM BRT GAM BRT GAM BRT GAM BRT
Bycatch 45 49.8 51.7 51.4 35 41 38.7 44.1
Closed Area Large 53.1 57.4 60 62.9 37.7 40.8 37.7 42.3
Closed Area Medium 49.9 54.8 53.1 57 36.6 41.4 38.9 45
Closed Area Small 48.9 54.1 50.1 58.7 30.5 34.6 33.5 35.2
Port All Nearshore 27.3 36 27.4 31.7 29.6 33.9 30.3 34
Port All Offshore 41.4 47.3 46 48 28.1 33.7 28.7 35.9
Port Middle Nearshore 27.1 34.9 27.2 32.7 28.1 34.2 28.5 34.9
Port Middle Offshore 48.2 58.1 49.1 56.7 30.7 34.9 30.7 35.5
Port Northern Nearshore 25.6 27.96 25.9 28.2 36.2 40.6 36.3 42.1
Port Northern Offshore 24.6 28.5 25.5 28.7 29.4 35.7 29.4 36.6
Port Southern Nearshore 32.1 35.6 35.1 36 34.4 38.1 34.4 37.8
Port Southern Offshore 35.4 40.6 38.2 45.2 26.2 31.3 26.5 32.7
Preferential 47.9 52.9 52.4 56.2 32 36.1 37.8 37.4
Random 44.9 49.3 47.6 50.1 57.7 63.5 57.8 64.9

Environment Only Env + Spacetime Environment Only Env + Spacetime
Presence Component Abundance Component

Scenario



 
 
 
Figure S1. Virtual species response curves. ‘spA’ is the prey species, and represents the target 
species preference for its prey species.  
 
 
 
 
 
 
 
 



   

 

  
 
Figure S2: (a) Spatial residual (predicted – observed) maps for the GAM models, and (b) spatial residual 
maps for the BRT models for selected sampling scenarios fit Environmental covariates only, and 
Environmental and Space-Time covariates (EST). Only the historic training period (1985-2010) and late-
century future period (2070-2100) are shown for simplicity.  
 
 
 
 
 
 
 
 
 

a) 

b) 



 
Figure S3: Biomass time series for models fit with space and time covariates as well as all three 
environmental covariates (MLD, SST, CHL).  
 
 
 
 
 
 



 
Figure S4: Distribution and climate bias of environmental variables in each sampling scenario 
for historical period (1985-2010). Colors indicate the magnitude of the climate bias of each 
sampling scenario, measured with Cohen’s D (left panels) and Hellinger distance (right panels). 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Figure S5: Distribution and climate bias of environmental variables in each sampling scenario 
for early-century period (2011-2039). Colors indicate the magnitude of the climate bias of each 
sampling scenario, measured with Cohen’s D (left panels) and Hellinger distance (right panels). 



 
Fig S6: Distribution and climate bias of environmental variables in each sampling scenario for 
middle-century period (2040-2069). Colors indicate the magnitude of the climate bias of each 
sampling scenario, measured with Cohen’s D (left panels) and Hellinger distance (right panels). 
 
 



Fig S7: Distribution and climate bias of environmental variables in each sampling scenario for 
late-century period (2070-2100). Colors indicate the magnitude of the climate bias of each 
sampling scenario, measured with Cohen’s D (left panels) and Hellinger distance (right panels). 
 
 
 



 
 

 
Figure S8. Sea surface temperature response curves for the binomial (occurrence, presence-
absence) part of delta model (GAMs).  
 



 

 
Figure S9. Sea surface temperature response curves for abundance part of delta model (GAMs).  
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S10. Mixed layer depth (mld) response curves for binomial (occurrence, presence-
absence) part of delta model (GAMs).  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S11. Mixed layer depth (mld) response curves for abundance part of delta model 
(GAMs).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S12. Sea surface temperature response curves for the binomial (occurrence, presence-
absence) part of delta model (BRTs).  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S13. Sea surface temperature response curves for the abundance part of delta model 
(BRTs).  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S14. Mixed layer depth response curves for the binomial (occurrence, presence-absence) 
part of delta model (BRTs).  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S15. Mixed layer depth response curves for the abundance part of delta model (BRTs).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig S16: Comparison of Hellinger Distance (taken as the maximum HD across all climate 
variables for each sampling scenario and time period) and Mean RMSE.  
 



 
Figure S17: RMSE time series for models for 1985-2100. Each panel represents one of the 14 
different fishing location scenarios, and each line represents the different model algorithm (GAM 
or BRT). Dashed line represents when the historical model fitting ends (1985-2010) and 
forecasts begin (2011-2100).  
 
 
 
 
 
 
 
 



 
 
Figure S18: Time series of annually averaged correlation coefficients. Each panel represents one 
of the 14 different fishing location scenarios, and each line represents the different model 
algorithm (GAM or BRT). Dashed line represents when the historical model fitting ends (1985-
2010) and forecasts begin (2011-2100). 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S19: Time-series of simulated (grey line) and estimated (red line) biomass, with the 
within-model uncertainty for GAMs indicated by red shading. Results shown for each sampling 
scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S20: Difference between predicted and true abundance at each spatial grid cell for 
each sampling scenario for the historical (1985-2010) time period. Blue areas indicate areas 
where the model underpredicts the true abundance, and red areas represent the areas where the 
models overpredict the true abundance.  
 
 



 
Figure S21: Difference between predicted and true abundance at each spatial grid cell for 
each sampling scenario for the early century (2011-2039) time period. Blue areas indicate 
areas where the model underpredicts the true abundance, and red areas represent the areas where 
the models overpredict the true abundance.  



 
Figure S22: Difference between predicted and true abundance at each spatial grid cell for 
each sampling scenario for the mid-century (2040-2069) time period. Blue areas indicate 
areas where the model underpredicts the true abundance, and red areas represent the areas where 
the models overpredict the true abundance.  
 
 



 
Figure S23: Difference between predicted and true abundance at each spatial grid cell for 
each sampling scenario for the late-century (2070-2100) time period. Blue areas indicate 
areas where the model underpredicts the true abundance, and red areas represent the areas where 
the models overpredict the true abundance.  
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